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In the present study we investigate the statistical thermodynamics of the 
anharmonic oscillator, whose energies are characterized by the potential 
�89 2 + Ax 4. Employing the energies recently obtained by Hioe and Montroll, 
we compute the partition function and the thermodynamic quantities for 
the anharmonic and quartic oscillators. Low- and high-temperature formulas 
are presented for the thermodynamic quantities of the oscillators. 
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1, I N T R O D U C T I O N  

Problems in quan tum field theory and molecular  physics have led to the 
investigation o f  the properties o f  anharmonic  oscillators characterized by the 
Hamil tonian  

H(oJ, A) = ~{f12 + x2~o2) + Zx 4 (1) 

In  the Schr6dinger equat ion the associated energy levels and wave 
functions are solutions o f  

[ ( - h 2 / Z m ) ( d 2 / d x  2) + �89 2 + A'x4]~b = E'~b 

which for  

E'/hoJ = E,  x = y/(rnw/h)  tt2, A = )~'hlmZw 3 

takes the form 

[_�89 + �89 + )ty']~b = E~  (2) 

While previous at tempts to solve Eq. (2) by perturbative and variational 
means (1~ have not  met with complete success, nonperturbat ive methods as 
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introduced by Biswas et al. ~2~ have obtained iterative schemes for computing 
the energy eigenvalues of Eq. (2) for a restrictive range in ~,. Recently, Hioe 
and Montroll, (~ by using the Bargmann representation of the Schrrdinger 
equation, have developed rapidly convergent algorithms for arbitrary 
~, (> 0). Using a combination of computer evaluation of the resulting difference 
equations associated with Eq. (2) and a WKB type of analysis, they have 
derived various analytical formulas for certain regimes of ~, and n. 

In the present study, we take the energy eigenvalues E,(A) (n being the 
quantum number of the energy eigenvalues) obtained from the Hioe-Montroll 
study and evaluate the thermodynamic quantities for the anharmonic and 
quartic oscillators. Since the energy eigenvalues are available for any ()t, n) 
regime, we compute the thermodynamic quantities for the general case of 
arbitrary temperature numerically. In particular, for small ~, (< 0.2) the heat 
capacity for low and high temperatures approaches that of the harmonic and 
quartic oscillators, respectively. However, for the large A (/> 0.2) regime, the 
heat capacity approaches that of the quartic oscillator. Finally, for particular 

regimes explicit energy formulas are available for an arbitrary quantum 
number. Using these formulas, low- and high-temperature expressions are 
obtained for the thermodynamic quantities for the anharmonic and quartic 
oscillators. 

2. T H E R M O D Y N A M I C  Q U A N T I T I E S :  G E N E R A L  (,~,n) R E G I M E  

The energy eigenvalues En(A) which are solutions of Eq. (2) can be 
characterized by two distinguishable regimes of A and n. For small A the 
energy levels are only slightly distorted from those of the harmonic oscillator, 
while for ;~ large the energy levels are only slightly altered from the quartic 
oscillator (with potential energy Ax4). One also finds for the small-A regime 
that there is a transition from a harmonic to a quartic-like behavior of the 
energy for increasing quantum nfamber. Having noted the dependence of 
the energy on X and n, we now turn to examine the thermodynamics of the 
anharmonic oscillator. 

From a knowledge of En(A) for all n, and the partition function Z, we 
can compute the thermodynamic quantities (free energy A, energy E, heat 
capacity C~, entropy S) for the anharmonic oscillator. In this section we only 
present the results for the heat capacity since its behavior is representative of 
the other thermodynamic quantities. For En(A) expressed in terms of harmonic 
oscillator units (E rather than E' in Eq. (2) and/3 = 1/kT, with T = T'/hoJ; 
/3 is dimensionless) Fig. 1 represents the heat capacity 

C~ l ~=o (~T))2exp[_~En(h)] _ ( 1 L  E,~(~) }2 "k- = 2 = ~Z ~ exp[-/3En(A)] (3) 
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Fig. 1. Calculation of the heat capacity C~]k vs. kT [Eq. (3)] for various A. From left to 
right: 0, 0.01, 0.05, 0.5, 10, 100. 

as a function of temperature for various values of  A. The energies have been 
taken directly from the Hioe-Montrol l  study [their equations (II.21)-(II.fi3), 
(ILL7), (III.9), and (IV. 16a)]5 a~ For  small A, one notes that the heat capacity 
behaves like the harmonic oscillator (A = 0) while approaching the asymp- 
totic value of three-quarters for the quartic oscillator at higher temperatures. 
Thus for low temperatures, the heat capacity as well as the energies of Eq. (2) 
are essentially those of the harmonic oscillator. At higher temperatures, the 
quartic-like energies from the higher quantum numbers are contributing to 
the partition function and as a result the heat capacity, as indicated in Fig. 1, 

tends asymptotically to the limit of the quartic oscillator. 
The calculations above A = 0.2 show the heat capacity for the anhar- 

monic oscillator to be equivalent to the purely quartic oscillator in behavior. 
Again this result for A/> 0.2 is consistent with the dominance of the potential 
Ax 4 in determining the values of the energy. 

Having computed the general features of the thermodynamics of the 
anharmonic oscillator for arbitrary (A, n) and temperature, we turn to the 
available explicit energy formulas and compute high- and low-temperature 
expressions for the anharmonic and the quartic oscillators. 

3. T H E R M O D Y N A M I C  E X P R E S S I O N S  

For  the anharmonic oscillator A /> 0.2 and quartic oscillator Hioe and 
Montroll have obtained explicit formulas for the energies of Eq. (2) for 
arbitrary n. However, for the anharmonic oscillator • ~< 0.2 we only have 
explicit energy formulas for small n. We take these formulas and obtain 
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expressions for the thermodynamic quantities at high and low temperatures. 
Finally we ieturn and discuss the results of Fig. 1 in terms of these thermo- 
dynamic expressions. 

The energy eigenvalues E,(h) which are a solution of Eq. (2) for h /> 0.2 
are(8) 

a A- 4/3-~ E,~(h) = ht/a(al,,~ + a2,nh -2/a + 8,n ), n = O, 1 

......~8 l*'a b 2 ( n + l )  218 bah -4/a ) 

n>~2  (4) 

where bl = 1.376, b2 = 0.26, b3 = - 0 . 0 1 1 6 ,  3 = 0.02650, and the a~.n 
(i = 1, 2, 3) are tabulated. (3~ From a knowledge of the energies for the 
system we are now ready to obtain expressions for the partition function, 
more specifically on the form of the partition function and thermodynamic 
quantities at high and low temperatures. 

In the high-temperature limit, the partition function Z may be taken as 

Z =  ~ exp -13A1/3bz n + + ~ n +  + ~ A -4/3 
~ , = 0  

By introducing the new variable h = fll/2[(n + �89 + c], where c = 
(b2/2bl)h -2/3 and taking/3 < 1, we can replace the above sum by the integral, 

f; Z = (3/2)/?-a/4{exp[(-p/a)~]} [exp(-bl,W~fi2)]hl/2(1 - c,81/2/f01/2 dfz 

= b3 - (b22/4b~), t~ = fl~/2[(1/2) 2/a + e] (5) 

By expanding (5) and integrating each term, we obtain an expression for 
the partition function which, when combined with appropriate thermo- 
dynamic formulas, yields the following expressions: 

3/3_ 1 ~ V '~  r(1/4) 
E = ~ + _ + 4 - -  F(3/4) 032)-1/2 + 0(,8-1/,) 

G 3 V ~  P(I/4) (~) 1/2 
k - 4 8 F(3/4) + O(,83/~) 

A =  - k T l n  [~ ~-3/*(bla~/a)-*'3r(~) ] bl 42 (6) 

V E  r(1/4) 0(/3-1,,) 
+ ~ F(3/4)(./32)-~,2 + 

= ~ + In (blh~/a -3/4p O(~1/2) 

in the limit as fi --~ 0. 
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At low temperatures we only consider the first two energy levels as 
contributing to the partition function; then the partition function takes the 
form 

Z = 2 exp[-/3E+(A)] cosh[flE-(A)] (7) 

where Eo(A) and El(A) are from Eq. (4), and 

E+(2`) = �89 + E1(2`)1 = 2`1'3(1.53 + 0.0252` -2/a + 0.012` -4~a) 
(8) 

E-(2`) = �89 - E1(2`)] = 2`1/a(-0.86 - 0.112` -2/3 + 0.00262` -''3) 

The thermodynamic quantities are then, for/3 >> 1, 

E = E+(2`) - E-(2`)tanh[/3E-(2`)] ~ E+(2`) + E-(2`) = E0(2`) 

C,,/k = [/3E- (2,)] 2 sech2[/3E - (2`)] ~ [/3E- (2`)]24 exp[2/3E- (2`)] (9) 

A = - k T l n  {cosh[/3E- (2`)]} - k T l n  2 + E + (2`) ,,~ E + (2`) + E-  (2`) = Eo(2`) 

S / k  = In Z +/3{E+(2`) - E-(A) tanh[/3E+(2`)]} ~ 0 

where the expressions on the right-hand side correspond to the limiting 
behavior of the quantities as /3 ~ oo. Comparison of Eqs. (9) with exact 
calculations (not shown here) of the thermodynamic quantities such as 
Eq. (3) have shown them to agree very well with these low-temperature 
expressions (i.e., through the Cv/k range 0-0.4). Equations (9) are general 
expressions for obtaining the low-temperature behavior of a system where 
E+(A) and E-(2`) are defined. 

For the anharmonic case of A < 0.2, the only explicit energy formulas 
are for small n. Therefore we restrict our discussion of this A regime to that of 
low temperature. Again if we consider the partition function to be expressed 
in terms of the first two energy levels, then from Eqs. (7) and (9), 

1 3  3 2 ` 2 [ ~ 3  - - ~ 3 0 ~ )  
Eo(2`) = ~ + ~.a - ~ 1 , 2 + 9 2 ` + 4  

(lO) 
E1(2`)  = 1 + + T 2` - a2 _ _  + 

2 + 152  ̀ 4(2 + 21t) 

and with E+(2`) and E-(2`) appropriately defined as in Eq. (8), 

E+(2`) = 1 + (9/4)2` - (3/4)2`2d+(2`) 

E-(2`) = - 1 / 2  - (6/4)2` + (3/4)a2d-(2`) (11) 

we have the description of the thermodynamic behavior of the anharmonic 
oscillator for ,/ < 0.2 at low temperature. 

Before discussing the expressions in Eqs. (6) and (8) in terms of the results 
of Fig. 1, we next evaluate the high- and low-temperature formulas for the 
quartic oscillator since we have seen in our discussions of Fig. 1 that the 



260 Mart in  Schwarz, Jr. 

anharmonic behavior goes over to that of the quartic oscillator at high 
temperatures. 

The energy levels for the quartic oscillator with potential energy Ax 4 are C3~ 

E~(A) = hll3bl[(n + 1/2) + 0.0265(n + 1/2)-1] 4'8, n /> 2 

Eo(h) = 0.667~ 1~3, El(A) = 2.39A 1/3 (12) 

for all A > 0. 
As before we are only interested in the forms of the expressions for the 

partition function and the thermodynamic quantities at low and at high 
temperatures. 

For  high temperatures the partition function is 

Z = ~ exp[-flb~(n + �89 
n = 0  

We can replace the sum by an integral by introducing the variable h = 
/31/2(n + 1/2) 2/3, such that for/3 < 1 

Z = (3/2)/3- 3,4 [exp( -  blhl!ah2)lh~/2 d~ (13) 
/ t  

From Eq. (13) the thermodynamic quantities as/3 --> 0 are 

E = (3/4)/3 -1 + [blj2/2F(3/4)](h//3) 1f2 + 0(/38~4) 

Cdk  = 3/4 + O(fl 3~4) 

A = - k T  In [(3/4)(bl A 1/3) - 3/4/3- 8/4i?(3/4)] (14) 

+ (4/3)[(blAl13)814117(3/4)]/3-11~ + 0(/3314) 

S/k = 3/4 + ln[(3/4)/3-3'4(bla~/3)-3"F(3/4)] + 0(,[33'') 

The low-temperature expressions for the quartic oscillator are the same as 
Eqs. (7) and (9) except that we replace E0(A) and E~(A) by Eqs. (9) and 

E+(A) = 1.53A lt3, E-(A) = -0.86A 1/3 (15) 

Having obtained thermodynamic expressions for the anharmonic and 
quartic oscillators at high and low temperatures, we now discuss these results 
in terms of  the calculations of  Fig. 1. From the analysis of the heat capacity 
for low temperatures one finds from Eqs. (9) and the appropriate E+(A) and 
E-(A) that for A < 0.2 the limiting form of the heat capacity is 

C~/k ~- /32e-r (16) 

where gh is the correction term to the harmonic oscillator [here we have taken 
E-(A = 0) = - � 8 9  and gh = 1, harmonic reference] and for 0 ~< A ~< 0.2, 

gn = [1 + 3A - kh2d-(A)] 2 exp[-/3(3h - ~hZd-(h))] (16a) 
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noting for A -- 0 that gh = 1. Thus the heat capacity for the small A (< 0.2) 
regime is shown, as in Eq. (16), Fig. 1 and in the characteristics of the energy 
eigenvalues, (3) to involve corrections to the harmonic oscillator. However, 
for )~/> 0.2 the heat capacity (low temperatures) has the limiting form 

Cv/k ~- f12(2.96)~213(exp[- fl ~l13(1. 72) ]}gq (17) 

where here gq is the correction term to the quartic oscillator [E-(~) from 
Eq. (15) and gq = 1, quartic reference] and for )t >/ 0.2, 

gq = (1 + 0.128,~ -2j3 - 0.003A-4J3) 2 exp[-fi(0.22A -2~3 - 0.0052A-413)] 

Here again we note that the heat capacity in Eq. (17) for the large-~ regime as 
well as the energy eigenvalues involve corrections to the quartic oscillator. 

Since explicit energy formulas for arbitrary n are only available for the 
t> 19.2 regime, we have restricted our high-temperature analysis to this case. 

Having discussed the small-A behavior of the heat capacity in our analysis 
of Fig. 1, we only note from this figure that the heat capacity for the large-~ 
regime is asymptotic to three-quarters. From Eq. (14) we see that the quartic- 
oscillator asymptotic limit of the heat capacity is 3/4, while in Eq. (6) the 
anharmonic oscillator approaches 3/4 as (fi/~)li2, which is seen in Fig. 1. 
Thus, as in the low-temperature cases, for )~/> 0.2 at high temperatures the 
heat capacity approaches the behavior of the quartic oscillator. 

We thus conclude that the thermodynamic properties of the anharmonic 
oscillator can be characterized by two ~ regimes. For small A (< 0.2) the 
behavior is similar to that of the harmonic oscillator, while for large ~(~> 0.2) 
the behavior is analogous to that of the quartic oscillator. However, for both 
A regimes at higher temperatures the thermodynamic properties tend toward 
those of the quartic oscillator through the contributions of the higher energy 
levels (quartic like) to the partition function, this becoming more significant 
for ~ decreasing. 
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